SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report
Caltech-CS-TR-88-18
9 November 1988

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
09 NOV 1998 2. REPORT TYPE 09-11-1998 to 09-11-1998
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Submicron Systems Ar chitectur e Project £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-88-18
9 November 1988

Reporting Period: 1 April 1988 — 31 October 1988 (7 months)
Principal Investigator: Charles L. Seitz

Faculty Investigators: William C. Athas
K. Mani Chandy
Alain J. Martin
Martin Rem
Charles L. Seitz
Stephen Taylor

Sponsored by the
Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research
Contract Number N00014-87-K-0745

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of the research activities and results for the seven-
month period, 1 April 1988 to 31 October 1988, under the Defense Advanced
Research Project Agency (DARPA) Submicron Systems Architecture Project.
Previous semiannual technical reports and other technical reports covering parts

of the project in detail are listed following these summaries, and can be ordered
from the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Changes in Key Personnel

Dr. William C. Athas completed his appointment as a Postdoctoral Research Fellow
in Computer Science in August 1988, and has joined the faculty at the University
of Texas at Austin as an Assistant Professor of Computer Science. Dr. Stephen
Taylor, a new PhD from the Weizmann Institute of Science and the author of
a multicomputer implementation of flat concurrent prolog, joined the project in
September 1988 with an appointment at Caltech as an Instructor in Computer
Science.

-1-

2. Architecture Experiments

2.1 Mosaic Project

Bill Athas, Charles Flaig, Glenn Lewis, Jakov Seizovic, Don Speck, Wen-King Su,
Tony Wittry, Chuck Seitz

The Mosaic C is an experimental multicomputer with single-chip nodes, currently in
development. The stipulation that the nodes fit on a single chip so limits the storage
for each node that relatively fine-grain concurrent programming techniques must be
used. The Mosaic C will be programmed using the Cantor programming language,
a fine-grain object-based (or Actor) language. We are working toward building a
16K-node Mosaic system using nodes fabricated in 1.2um CMOS technology, with
a near-term milestone of a 1K-node system using nodes fabricated in 1.6um CMOS.

Much of our effort in this period has been concentrated on the Mosaic C project.
The following is a brief summary of these activities (See also sections 3.1 & 4.5):

1. Cantor version 2.2 has been used internally within the research group for the past
several months, and has been documented for external distribution. A technical
report describing a collection of exemplary Cantor 2.2 programs that range up
to 15 pages of program text in length was published. The report also reports
the rationale for many of the design decisions in the evolution of Cantor from
version 2.0 to 2.2.

2. Our initial implementation of a Cantor code generator for the Mosaic C indicated
that only a simple procedure call mechanism was required; otherwise, the Mosaic
C instruction set has been an efficient target for code generation. Work has
commenced on a final Cantor code generator and runtime system for the Mosaic.

3. In accordance with the studies of code generation, the microcode for the Mosaic
C processor was revised to implement an instruction set having a simpler
procedure-call mechanism, together with several other minor refinements. The
simplification of the instruction set reduced the number of implicants in the
microcode that controls the processor from 66 to 102. The impact of this
simplification on the processor area is merely favorable; its greatest benefit is
in improving the processor speed (the RISC effect).

4. The entire processor was simulated at the clock-cycle and microcode level
to debug and verify the microcode. The verified microcode was then used
to generate a PLA structure, which was tied to the Mosaic C datapath for
switch-level simulation and verification of the entire processor. A hybrid
static /precharge PLA was designed to maximize the performance, and will be
used in the final version of the processor.

5. An interface between the router and memory was designed, laid out, and
verified by switch-level simulation. This final section of the Mosaic C single-

-2.

chip multicomputer node also includes the arbitration for memory refresh and
Memory access.

Fabrication of the first prototype processors and full Mosaic elements is now
anticipated for early CY1989.

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Alain Martin, Bill Athas, Charles Flaig, Jakov Setzovie, Craig Steele,
Wen-King Su

Deliveries of the first production models of the Ametek Series 2010, a second-
generation medium-grain multicomputer developed as a joint project between our
research project and Ametek Computer Research Division, took place in this period.
The reports we have received have been favorable. One customer who is also a
DARPA contractor had developed 10,000+ lines of source code using the Cosmic
Environment prior to taking delivery of the Ametek 2010, and apparently ported
this code in a few days with no difficulties.

Additional benchmarks on the Ametek Series 2010 continue to show that it runs
8-10 times faster per node than such first-generation machines as the Intel iPSC /1.

Copies of the Cosmic Environment system have been distributed to approxi-
mately an additional 35 sites in this period, bringing the total copies distributed
directly from the project to over 150. In addition, source copies of the Reactive
Kernel node operating system were provided to two government contractors who
are purchasing Ametek 2010 systems. An article titled “Multicomputers: Message-
Passing Concurrent Computers” was published in the August 1988 issue of IEEE
COMPUTER. This article on the current status of the multicomputers that have
developed out of the work of our research group stimulated requests for many ad-
ditional copies of “The C Programmer’s Abbreviated Guide to Multicomputer Pro-
gramming” [Caltech-CS-TR-88-1].

We expect to take delivery of the first 16-node increment of a 256-node Ametek
2010 in November 1988, and also a 16-node Intel iPSC/2, which will later be
expanded to 64 nodes. Substantial blocks of time on the Ametek 2010 will be
available to guest DARPA researchers.

Our Caltech project continues to work with both Ametek and Intel on the
architectural design, message-routing methods and chips, and system software
(evolutions of the Reactive Kernel (RK) node operating system and the Cosmic
Environment (CE) host runtime system) for multicomputers. (See sections 3.2, 3.6
and 4.6 for details on these efforts.) We expect to see additional major advances in
the performance and programmability of these systems over the next two years. In

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Ametek Computer Research
Division (Monrovia, California).

-3

addition, we continue to develop applications in VLSI design and analysis tools, and
in other areas in which the programming of these multicomputer systems presents
particular difficulties or opportunities. (See sections 3.3-3.5 and 4.9.)

2.3 Cosmic Cube Project
Bill Athas, Wen-King Su, Jakov Seizovic, Chuck Seitz

This section summarizes the current usage and the hardware and software status
of our first-generation multicomputers, the Cosmic Cubes and Intel iPSC /14d7.

These systems continue to operate reliably. Overall usage has been moderately
heavy. The most time-consuming application in this period from within our own
group has been a continuation of an extensive series of simulations by John Ngai
concerned with the maximal utilization of networks with faulty routers or channels
(see section ?). Supersonic flow computations being performed by students and
faculty in Aeronautics at Caltech continue as the largest share of outside use.

The 64-node Cosmic Cube exhibited a hard failure in this seven-month period,
a complete failure of its primary 5V, 130A power supply. The power supply was
replaced, and the system rebooted without any problems. Counting the power
supply failure as a single failure, the two original Cosmic Cubes have now logged 3.6
million node-hours with only four hard failures, three of them being chip failures in
nodes. Curiously, we have not encountered a single connector failure. The calculated
node MTBF of 100,000 hours reported before these machines were constructed was
extremely conservative. A node MTBF in excess of 1,000,000 hours is probable,
and can be stated at a 54% confidence level.

Our Intel iPSC/1 d7 (128 nodes) was contributed to the Submicron Systems
Architecture Project as a part of the license agreement between the Caltech
and Intel, and is accessible via the ARPAnet to other DARPA researchers
who may wish to experiment with it. To request an account, please contact
chuck@vlsi.caltech.edu. The Ametek Series 2010 system to be installed later
this month will be available for outside use on a similar basis.

3. Concurrent Computation

3.1 Cantor

Nanette J. Boden, William C. Athas, Chuck Seitz

Programming for Fine-Grain Multicomputers

Over the last year we have been conducting a series of fine-grain programming
experiments using Cantor. The purpose of this series of experiments was both
to evaluate Cantor as a programming language and to investigate the nature of
fine-grain programming. Application programs that have been written in these
experiments include: fast-Fourier transform, shortest-path algorithms, a 2D convex
hull solver, R-C chain-circuit simulation, digital logic simulation, a checkmate
analyzer, an enumerator of paraffin isomers, and many others.

As a result of these programming experiments, modifications to Cantor
have been made to facilitate fine-grain programming. Iteration internal to
objects, custom objects, functional abstraction, and one-dimensional vectors are
programming constructs that are now available in the newest version of Cantor,
Cantor 2.2. A feature has also been added to the language to permit rudimentary
discretion over message receipts. Analysis of the programming experiments clearly
indicates that programming situations exist where some message discretion is very
useful. In addition to these modifications, unnecessary features of the original
language specification have been removed, including dynamic typing of variables.
The changes that have been made to Cantor thus enhance programming abstraction
while removing unnecessary constructs.

Using the latest version of Cantor as an experimental tool, we have written
enough programs in the fine-grain style to draw some conclusions. Although
formulations for Cantor programs are myriad, we have detected three general
paradigms for the development of fine-grain programs:

1. Functional program specifications can be mapped directly into message-driven
programs.

2. Solution specifications can be mapped into message-driven programs.

3. The object program can operate as a “logical apparatus” to solve the application
problem.

In addition to observing these paradigms, we have been encouraged by the high
degree of concurrency that is achieved in Cantor programs and by the convenience
and generality of fine-grain programming. Based on our experiments with Cantor
thus far, we believe that large, highly concurrent programs can be efficiently
expressed in the fine-grain programming style.

-5-

Programming for the Mosaic

Recent research in the area of Mosaic programming has focused on the definition
and analysis of an abstract machine for the execution of Cantor code. The Cantor
Abstract Machine (CAM) definition is based on the fine-grain multicomputer
architecture, yet encapsulates operations like object creation, message sends and
receives, elc, in single instructions. The purpose of this approach is to isolate
the implementation of these complicated operations as much as possible from the
development of an efficient runtime system.

A new Cantor code generator and simulator have been written for the CAM.
Analysis of the abstract machine has already suggested improvements in the
Cantor intermediate format. In addition, simulation of program execution on the

CAM is expected to be very useful in evaluating potential Mosaic runtime system
alternatives.

3.2 The Cosmic Environment and Reactive Kernel

Jakov Seizovic, Wen-King Su, Chuck Seitz

The Cosmic Environment and Reactive Kernel continue to run reliably on the
original Cosmic Cubes and on the Ametek Series 2010, and no major changes have

been made. The internals of RK are now documented in technical report Caltech-
CS-TR-88-10.

In the original version of the RK, we were able to guarantee the weak fairness
of scheduling on a multicomputer node only if all processes on that node satisfied
the reactive property that they would eventually either terminate, or execute an
xrecv(). The producers of an infinite number of messages are an important class
of processes that do not satisfy the reactive property. A simple modification of
the implementation of the xmalloc() system call has enabled us to support the
infinite computations as well. The xmalloc() system call is implemented in terms
of the RPC mechanism. The requested buffer is not delivered immediately; instead

it is sent to the requesting process and delivered through the regular scheduling
mechanism.

3.3 CONCISE — A Concurrent Circuit Simulator*

Sven Mattisson, Lena Peterson, Chuck Seitz

Within this project, a concurrent circuit simulation program called CONCISE has
been developed. This program is a circuit simulator for transient analysis of CMOS-
circuits. It is written in C and uses the Cosmic Environment /Reactive Kernel
message-passing primitives.

* This segment of our research is a joint project between the Caltech Submicron
Systems Architecture Project and the Department of Applied Electronics at the
University of Lund, Sweden.

-6-

Recently, CONCISE was ported to the Ametek Series 2010. Thus, the program
now runs on several multicomputers with loosely coupled nodes, including the
Ametek 2010 and the Intel iPSC, and on a shared memory multicomputer, the
Sequent Symmetry. The port to the Ametek 2010 showed that CONCISE is more
than eight times faster on the Ametek 2010 than on the Intel iPSC /1, which is a
typical first-generation multicomputer.

The Reactive Kernel primitives support a programming model where each
process has its own memory space. This model makes dynamic partitioning and load
balancing expensive in CPU time. Thus, we have developed a static partitioning
scheme that tries to enhance the convergence rate of the waveform relaxation
method without sacrificing the grain-size of the computational tasks. It is important
to notice that the requirements on the partitioning algorithms in this case differ from
the “traditional” parallelization, where only a few processing nodes are used.

So far, six different combinations of iteration schemes and partitioning have
been tested. The iteration schemes tested are ordinary Jacobi iterations, ordinary
Gauss-Seidel, and n-colored Gauss-Seidel. The n-colored Gauss-Seidel uses the
incidence-degree algorithm to find a coloring with the least number of colors for the
circuit graph. Then, the different colors can be solved concurrently, since each node
has a color different from those of its neighbors. These three algorithms have all
been run with two different partitioning schemes: one in which each circuit node

forms a cluster on its own, and one where source-drain connected circuit nodes are
clustered together.

The results show that regular Gauss-Seidel iterations are not suitable except
for very few processing nodes, and this scheme is the most popular for sequential
waveform-relaxation implementations. Instead, the n-coloring version of Gauss-
Seidel iterations are useful for the case when the number of processing nodes is
large, but significantly less than the number of processes. The number of colors
needed usually lies between three and five.

When the number of computing nodes is close to the number of circuit nodes,
Jacobi iterations do surprisingly well. This is due to the fact that the load imbalance
gets increasingly severe for the other schemes. For some circuits, the clusters get
very big, and splitting schemes fail in producing reasonable size clusters that still
achieve comparable convergence speed. For such circuits a hierarchical approach
where more than one node can be assigned to solving a cluster would be desirable.
Such an approach will be possible with the faster message passing of the second-

generation multicomputers, and experiments in this area are presently being carried
out.

In another effort, Concise has been used by Anthony Skjellum in the Chemical
Engineering Department at Caltech for the simulation of distillation columns. This
work has shown that it is possible to use Concise to simulate dynamic systems that

-7-

are not at all like circuits. As part of this effort, Concise has been modified to make
it easier to install models of other kinds of “devices.”

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm

Wen-King Su, Chuck Seitz

A new and more versatile logic simulator has been written in the past six months
to better evaluate a more diverse set of conservative variants of the Chandy-
Misra-Bryant (CMB) distributed discrete-event simulation algorithm. Most of
the conclusions from this study are included in the paper “Variants of the
Chandy-Misra-Bryant Distributed Discrete-event Simulation Algorithm,” accepted
for publication in the 1989 SCS Eastern Multi-conference. The primary conclusions
are that the variants examined are similar, in that all of them take an initial penalty
running on a single node in comparison with sequential event-driven simulators
that exploit an ordered event list. The penalty is due to the generation and
the processing of null messages. However, as the number of processing nodes
increases, the simulation time decreases linearly until all usable concurrency has
been exhausted. Depending on the circuit being simulated, the crossover point (the
point at which the time taken by the concurrent simulators drops below the time
taken for the sequential simulator) has been observed to be anywhere between four
and 200 nodes.

After the paper was submitted, a new simulator variant was written to try to
reduce the initial overhead by combining sequential simulation methods with the
concurrent simulator variants. The resulting simulator has the performace of a
sequential simulator for the single processor case, and it converges with that of the
concurrent simulator when the number of nodes is sufficiently large. However,
the nature of the logic circuit being simulated strongly influences the rate of
convergence. We have observed all three cases:

1. The simulation time humps upward toward that of the concurrent simulators as
soon as the number of processing nodes is increased beyond one.

2. The simulation time remains the same until the concurrent-sequential crossover
point.

3. The simulation time starts to decrease as soon as the number of nodes are
increased, but the drop is less than linear.

A conclusion of this study is that very-high-performance logic simulation on
concurrent computers is completely plausible for systems with very large numbers
of nodes, where the CMB null-message scheme is fully exploited. Conversely, it
is efficient for small-N systems only when the elements being simulated are more
complex and have longer running times than logic elements.

-8

3.5 Automatic Mapping of Processes and Channels
Drazen Borkovie, Alain Martin

To facilitate programming of message-passing machines, we have developed a
preprocessor, map?, that allows for a certain level of abstraction in the mapping
of processes and channels on the nodes and physical channels of a message-passing
multicomputer.

The description of a set of processes and the channels between them has been
compiled into a set of C functions that perform the mapping of the processes onto
physical nodes of the target machine. The preprocessor supports a hierarchical
organization of processes and local names for the channels. There is also a set of
library routines that can emulate channels with arbitrary slack.

The preprocessor and the library routines have been successfully implemented
and tested under the Cosmic Environment/Reactive Kernel system.

3.6 A Multicomputer “Page Kernel”
Craig S. Steele, Chuck Seitz

As described in a previous report, an experimental “page kernel” is being developed
that uses memory-access-protection mechanisms as the interface to multicomputer
message subsystems. A prototype of the “page kernel” is now running on a
sequential machine. The current code is simulating the memory-management
hardware of the Ametek Series 2010 computing node, and will be ported to the
Series 2010 shortly.

The page kernel supports dynamic load-balancing and process relocation. The
kernel’s ability to transparently update copies of data distributed across a multi-
node system is particularly well-suited for chaotic iterative programs, such as
process-placement optimization.

-O-

4. VLSI Design

4.1 Testing Self-Timed Circuits

Pieter Hazewindus, Alain Martin

We are investigating methods to test self-timed circuits. Traditionally, it is thought
that these circuits are hard to test because of the possibility of races and hazards,

and because these circuits are sequential. In our design method, however, races and
hazards are absent.

The fault model we use is the stuck-at model, where each wire may be stuck
forever at a high (logic-1) or low (logic-0) voltage. We have proven that it is sufficient
to perform a single four-phase handshake on each channel to detect all detectable
stuck-at faults. Some faults are undetectable.

For the automatic compilation, the main sequencing element is the so-called
D-element. For the D-element, there are twenty-two possible stuck-at faults, two
of which are undetectable. We have designed an alternate D-element that does not
have any undetectable stuck-at faults. Most other circuit constructs in this compiler
are completely testable.

Although it is not yet certain whether all constructs can be made entirely

testable, our present estimate is that self-timed circuits designed according to our
method should be easier to test than traditional clocked circuits.

4.2 A Self-Timed 3z + 1 Engine
Tony Lee, Alain Martin

We have designed and fabricated a self-timed special-purpose processor for
implementing the 3z+1 algorithm. The processor consists of a state-machine and an
80-bit-wide datapath. It contains approximately 40,000 transistors and operates at
over 8 MIPS in 2um MOSIS SCMOS technology. As usual, the chip was functional
on first silicon.

4.3 Performance Analysis of Self-Timed Circuits
Steve Burns, Alain Martin

We have developed methods for determining the repetition time of a set of
communicating sequential processes described as handshaking expansions. This
performance measure is provided in the form of constraint equations involving
symbolic values of the communication and sequencing delays. The analysis is valid
regardless of the actual delay values, and thus provides a means of comparing designs
described at the handshaking expansion level without first generating detailed
circuit implementations. Circuits for handshaking expansions that result in slow
repetition times need never be designed.

-10-

This method has proven particularly useful in the analysis of programs involving
data. It has been used throughout the design of the self-timed microprocessor,
increasing the performance of programs involving data up to a factor of two.

4.4 The Design of a Self-Timed Microprocessor

Alain Martin, Steve Burns, Tony Lee, Drazen Borkovic, Pieter Hazewindus

In order to refute the claims that our design method would be too slow and too
wasteful in area for anything but small circuits, we have embarked on the design of
complete general-purpose microprocessor. The instruction set is “classic”: 16-bit
instructions with offset, load/store type of instructions, and separate memories
for instructions and data. The only restriction is the absence of an interrupt
mechanism.

As expected, since the method is based on concurrent programming techniques,
the design is highly concurrent. The fetch, decode, and execute phases overlap, as
do the execution of ALU and memory instructions. The different processes share
16 general-purpose registers, and four buses are used to communicate with the
registers, in addition to point-to-point channels.

We are now in the layout phase of the design. Preliminary estimates of the
performance are encouraging. In 2um SCMOS, we expect to reach 20MIPS.

4.5 Mosaic Elements

Chuck Seitz, Bill Athas, Charles Flaig, Glenn Lewis, Don Speck, Jakov Seizovic,
Wen-King Su

With the completion of the packet interface section and the near-completion of the
processor, and with the other sections having already been fabricated and tested,
the Mosaic C single-chip multicomputer node is rapidly approaching completion.
Assembly of the sections will start within the next month, and fabrication of
complete elements early in 1989.

The packet interface for the Mosaic chip has been layed out and verified with the
switch-level simulation. It is entirely synchronous, and was designed conservatively,
s0 no problems with it are anticipated.

The packet interface consists of two independent finite-state machines, one for
sending packets, and the other for receiving packets. Both machines act as simple
DMA channels, stealing unused memory cycles, and the packet interface is designed

to be able to sustain a throughput equal to the maximum possible message rate that
can be achieved by the message router.

The packet interface provides for a fairly complete testing of itself and the router,
initiated by a CPU request to send a message to itself. In this mode of operation, the

message will be taken from the memory, sent through all three router dimensions,
and received back into the memory.

-11-

4.6 Fast Self-Timed Mesh Routing Chips
Charles Flaig, Chuck Seitz

A new design of a mesh routing chip (MRC), the FMRC2.0 design, was sent to
fabrication in May 1988, together with a separate test chip containing only the
FIFO used in the FMRC2.0. These chips employ a circuit design style that is
potentially faster but less conservative than is usual for self-timed designs. The
chips returned from fabrication do indeed operate nearly three times faster than
previous designs. The FIFO test chip, fabricated in a 2um MOSIS SCMOS process
(this chip was also a test of the new 40-pin 2um pads and design frame that we
developed for MOSIS) operated correctly at 70 MBytes/s!

The critical path in a routing chip includes somewhat longer delay paths due
to the switching of the packets; hence, although the FMRC2.0 was fabricated in a
1.6pm process, and its FIFOs might be expected to operate at around 85 MBytes /s,
it operates as anticipated at 70 MBytes/s. However, it routes packets incorrectly,
showing symptoms of directing packets according to the tail of the previous packet
rather than the head of the current packet. This fault was finally traced to a timing
error of approximately 0.7ns in the latching of a routing decision. The timing error
was fixed, and the timing margins in the entire chip were reexamined. A post facto
Spice simulation of what the analysis showed were the critical points in the old
and new designs verified that the original design had a timing error of '0.7ns, while
the revised design has a timing margin of about 1.0ns (about 50% of the difference
between two short delay paths; hence, not as close as it may sound).

If successful, we expect this new FMRC chip to replace the MRC currently
used in the Ametek Series 2010 multicomputer. With help from George Lewicki,

this design is also being transferred to an Intel fabrication process for possible use
in a future Intel multicomputer.

Tests of the self-timed FIFO in a 2um MOSIS SCMOS technology will be of

interest to other chip designers in the DARPA VLSI community — particularly
those designing self-timed chips.

The 2um FIFO tests yielded a request — acknowledge time of 6.5-7.0ns, and
a throughput of over 70 MBytes/s on these byte-wide channels. Lest someone
interpret this test result as implying that we are driving 7T0MHz signals through
these pads, please understand that in 2-cycle R/A signaling (cf, Mead & Conway,
figure 7.16), only one transition is required for each data transfer, so the maximum

fundamental frequency on any R/A or data pin is 35MHz to transfer data at a
70MHz rate.

The total fall-through time for all 101 FIFO stages was measured as 350mns,
or 3.5ns fallthrough per stage. The fallthrough time calculated by the 7-model
is about 707, so this is consistent with a value of 7 for the 2pm MOSIS SCMOS
n-well process of about 50ps (which is a bit smaller than expected). The internal

-12-

cycle time when the operation is not impeded by signals passing through pads and

package pins is about 1807, or about 9ns, corresponding to an internal throughput
rate of 114MHz.

These speeds in the 2u MOSIS n-well SCMOS technology are, as expected,
about twice as fast as a nearly identical test device fabricated in a 3um MOSIS
p-well SCMOS process. The fallthrough times are more difficult to measure in the
1.6pum FMRC2.0 chip, because of switching and address-decrementing logic in the
FIFO pipeline. We can infer than the FIFO fall-through times are about 2.8ns per

stage, corresponding to a 7 of 40ps, and an internal throughput rate of about 140
MHz.

It is quite evident from these tests that we are able to achieve much higher
internal speeds with self-timed and/or asynchronous designs than we know how to
achieve with clocked designs.

4.7 Adaptive Routing in Multicomputer Networks
John Y. Ngai, Chuck Seitz

Our studies of adaptive routing in multicomputer networks are approaching a
conclusion, and have been generally successful. We now believe that the Adaptive
Cut-Through (ACT) routing scheme is capable of outperforming the existing highly
evolved oblivious routing devices by a factor of about two in throughput, and have
numerous other advantages in hot-spot throughput and fault-tolerance. A summary
of the results of our investigations is attached at the end of this report.

What remains to be done to realize the advantages of the ACT routing scheme
is to design a VLSI routing chip and/or a new routing section for the Mosaic C.

4.8 Pads and Pad Frame Generation
Charles Flaig, Chuck Seitz

Derived in large part from the pads and pad frames we have designed for mesh
routing chips (MRCs), a variety of new pad circuits have been designed for the
A = 0.6um, 0.8um, and 1.0um MOSIS SCMOS processes. One of these design
variations was used to produce a new 2um 40-pin “tiny-chip” frame for MOSIS,
including input, Schmitt input, output, and tristate output pads. The unusual
features of these pad designs include the use of longitudinal (bipolar) clamp
transistors for static and overvoltage protection, and a variety of pad pitches.

We can now report some test results for the 2um pads. This 40-pin pad frame
was fabricated with a 101-stage self-timed FIFO from the FRMC2.0 design (see
section 4.6), together with some output pads being driven directly from input pads.

Overvoltage clamping on the inputs clamps to 6V at 200mA, and 7V at 800mA,
which is excellent. Undervoltage protection is about the same as above, BUT, at

-13-

about -500mA the chip appears to suffer latchup (if power is supplied). This is not
a problem for normal static, where no Vdd is applied, but if an input does goes
more than about 1V negative while power is applied, latchup may be induced.

For the Schmitt input pad, trigger voltages are 0.8V and 3.9V, for a 2.9V
hysteresis. Inpad — Outpad delay is 1.5-2.0ns for no load, 2.0-2.5ns for a fanout
of 1, and 2.5-3.5ns for a fan-out of 2. Rise/fall time is 3.5ns for no load, 4.5ns for a
fanout of 1, and 6.5ns for a fan-out of 2. The output pads can sink about 30mA at
1.0V, or source about 30mA at 4.0V, under 5.0V operation. These characteristics
are more than adequate for student projects.

4.9 The Notorious CIF-flogger Program

Glenn Lewis, Chuck Seitz

The CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the
geometry, and for performing parallel operations on the geometry in strips. It runs
under the CE/RK system, and hence, on most available multicomputers, including
the Ametek Series 2010.

The CIF-flogger currently supports simple bloat, shrink, and logical operations
on the flattened geometry, and hence can perform most geometrical design-rule
checks. It establishes connected component labeling and will eventually provide
complete design-rule checking, well checks, and circuit extraction. Based on timings
on the iPSC/1, CIF-flogger is expected to perform design rule checks for 100K-
transistor chips in much less than 1s per rule on second-generation multicomputers.

-14-

